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Abstract
Aims/hypothesis Clustering-based subclassification of type 2 diabetes, which reflects pathophysiology and genetic predis-
position, is a promising approach for providing personalised and effective therapeutic strategies. Ahlqvist’s classification is 
currently the most vigorously validated method because of its superior ability to predict diabetes complications but it does 
not have strong consistency over time and requires HOMA2 indices, which are not routinely available in clinical practice 
and standard cohort studies. We developed a machine learning (ML) model to classify individuals with type 2 diabetes into 
Ahlqvist’s subtypes consistently over time.
Methods Cohort 1 dataset comprised 619 Japanese individuals with type 2 diabetes who were divided into training and test 
sets for ML models in a 7:3 ratio. Cohort 2 dataset, comprising 597 individuals with type 2 diabetes, was used for external 
validation. Participants were pre-labelled  (T2Dkmeans) by unsupervised k-means clustering based on Ahlqvist’s variables (age 
at diagnosis, BMI,  HbA1c, HOMA2-B and HOMA2-IR) to four subtypes: severe insulin-deficient diabetes (SIDD), severe 
insulin-resistant diabetes (SIRD), mild obesity-related diabetes (MOD) and mild age-related diabetes (MARD). We adopted 
15 variables for a multiclass classification random forest (RF) algorithm to predict type 2 diabetes subtypes  (T2DRF15). The 
proximity matrix computed by RF was visualised using a uniform manifold approximation and projection. Finally, we used 
a putative subset with missing insulin-related variables to test the predictive performance of the validation cohort, consist-
ency of subtypes over time and prediction ability of diabetes complications.
Results T2DRF15 demonstrated a 94% accuracy for predicting  T2Dkmeans type 2 diabetes subtypes (AUCs ≥0.99 and F1 score 
[an indicator calculated by harmonic mean from precision and recall] ≥0.9) and retained the predictive performance in the 
external validation cohort (86.3%).  T2DRF15 showed an accuracy of 82.9% for detecting  T2Dkmeans, also in a putative subset 
with missing insulin-related variables, when used with an imputation algorithm. In Kaplan–Meier analysis, the diabetes 
clusters of  T2DRF15 demonstrated distinct accumulation risks of diabetic retinopathy in SIDD and that of chronic kidney 
disease in SIRD during a median observation period of 11.6 (4.5–18.3) years, similarly to the subtypes using  T2Dkmeans. 
The predictive accuracy was improved after excluding individuals with low predictive probability, who were categorised 
as an ‘undecidable’ cluster.  T2DRF15, after excluding undecidable individuals, showed higher consistency (100% for SIDD, 
68.6% for SIRD, 94.4% for MOD and 97.9% for MARD) than  T2Dkmeans.
Conclusions/interpretation The new ML model for predicting Ahlqvist’s subtypes of type 2 diabetes has great potential for applica-
tion in clinical practice and cohort studies because it can classify individuals with missing HOMA2 indices and predict glycaemic 
control, diabetic complications and treatment outcomes with long-term consistency by using readily available variables. Future 
studies are needed to assess whether our approach is applicable to research and/or clinical practice in multiethnic populations.
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SAID  Severe autoimmune diabetes
SIDD  Severe insulin-deficiency diabetes
SIRD  Severe insulin-resistant diabetes
SNNN  Self-normalising neural network
T2Dkmeans  Type 2 diabetes subtypes pre-labelled by 

k-means clustering
T2DRF5  Type 2 diabetes subtypes predicted by RF 

algorithm based on five variables
T2DRF15  Type 2 diabetes subtypes predicted by RF 

algorithm based on 15 variables
T2DRF25  Type 2 diabetes subtypes predicted by RF 

algorithm based on 25 variables
UMAP  Uniform manifold approximation and 

projection

Introduction

Diabetes mellitus is generally classified into type 1 and type 
2 based on its aetiology [1]. Type 1 diabetes is mainly caused 
by beta cell dysfunction due to autoimmune mechanisms, 
whereas type 2 diabetes is caused by the heterogeneous 
influence of insulin resistance and beta cell dysfunction [2]. 
When choosing a glucose-lowering drug, the decision has 
recently shifted from being based on side effects and cost-
effectiveness to being based on evidence for the prevention 

of diabetes complications, such as CVD, heart failure and 
chronic kidney disease (CKD) [3, 4]. However, the patho-
physiology, genetic risk and involvement of environmental 
factors such as diet, physical activity and stress vary widely 
among individuals with type 2 diabetes [5]. Therefore, a 
personalised approach that comprehensively considers these 
factors is crucial [6, 7].

Artificial intelligence (AI), including machine learn-
ing (ML), is rapidly being applied to diagnosis, treatment 
and management in diabetes care and research [8]. Using 
ML techniques, Ahlqvist et al found five diabetes clusters 
with different clinical phenotypes and outcomes in a Nordic 
population: Cluster 1, severe autoimmune diabetes (SAID); 
Cluster 2, severe insulin-deficient diabetes (SIDD); Cluster 
3, severe insulin-resistant diabetes (SIRD); Cluster 4, mild 
obesity-related diabetes (MOD); and Cluster 5, mild age-
related diabetes (MARD) [9]. The SAID cluster resembles 
type 1 diabetes, whereas the other clusters correspond to 
type 2 diabetes. These diabetes subtypes have been repli-
cated in cohorts including various ethnic groups in terms of 
genetic predisposition, glycaemic control, diabetes compli-
cations and treatment outcomes [10–15]. This suggests the 
effectiveness of a personalised approach using the diabetes 
subtypes [16–18].

However, there are several limitations when applying 
Ahlqvist’s diabetes clustering in clinical settings and other 
research. First, the diabetes clustering cannot classify new 
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individuals that are not included in their mother dataset 
because it depends on the relative positioning of individuals 
in an entire dataset map [19]. Second, the diabetes clustering 
cannot be applicable when there are missing fixed variables, 
HOMA2-B and HOMA2-IR, which represent two key patho-
genic mechanisms but are not routinely available in clinical 
practice and standard cohort studies [20]. For instance, an 
attempt to replicate the clustering using nine clinical varia-
bles, excluding HOMA2 indices, failed to identify Ahlqvist’s 
clusters [21]. Another study employing C-peptide and HDL-
cholesterol instead of HOMA2 indices was unsuccessful in 
classifying individuals to Ahlqvist’s subtypes [22]. Third, 
although the diabetes subtypes are theoretically stable over 
time, a proportion of individuals migrate between subtypes 
over time [13, 15, 23], limiting the use of this subtyping 
approach for estimating long-term treatment response and 
prognosis. As an example, Bello-Chavolla et al reported 
an AI approach using a self-normalising neural network 
(SNNN) model [15], showing that proportions of type 2 dia-
betes clusters were largely different at baseline vs 2 years of 
follow-up: SIDD 34% vs 16%; SIRD 7% vs 7%; MOD 41% 
vs 54%; and MARD 18% vs 23% [15].

In this study, an interdisciplinary team of diabetologists 
and ML specialists aimed to develop an ML model to classify 
individuals with type 2 diabetes consistently over time into 
Ahlqvist’s subtypes by minimising the above limitations [9].

Methods

Study design and participants

We included participants from two distinct geographical 
areas in Japan, Fukushima (Cohort 1) and Okinawa (Cohort 
2), to target a wide range of genetic backgrounds [24]. The 
study protocol was approved by the Ethics Committee of the 
Fukushima Medical University (approval no. REC 2022-
028). The sex of participants was determined by self-report.

Cohort 1 The Fukushima Diabetes, Endocrinology, and 
Metabolism (Fukushima-DEM) cohort was a retrospective 
and prospective survey of participants with impaired glucose 
tolerance and diabetes at the Fukushima Medical University 
to clarify the risk factors for the onset and progression of 
diabetes and its complications [10]. The flow from regis-
tration to dataset construction is shown in electronic sup-
plementary material (ESM) Fig. 1. The participants were 
recruited between January 2018 and March 2023 and fol-
lowed up until December 2023. Of the 897 participants, 619 
were diagnosed with type 2 diabetes based on the diagnos-
tic criteria described below. Participants without diabetes 
(n=153), with type 1 diabetes (n=70), with secondary dia-
betes (n=49) or who had missing clustering variables (n=6) 

were excluded. After labelling with k-means clustering, 70% 
of the total sample was randomly selected for training and 
the remaining 30% was used for testing.

Cohort 2 The Shimajiri Kinsermae Diabetes Care Clinic 
cohort was a prospective study of individuals with impaired 
glucose tolerance and diabetes recruited from Okinawa, 
Japan. The participants were recruited between January 2020 
and January 2021. Of the 1253 participants, 597 were diag-
nosed with type 2 diabetes based on the diagnostic criteria 
described below (ESM Fig. 1). Participants without diabetes 
(n=248), with type 1 diabetes (n=31), with secondary diabe-
tes (n=5) or who had missing clustering variables (n=372) 
were excluded. After labelling with k-means clustering, the 
data were used as external validation data for the trained 
model. A subset with completely missing insulin-related 
variables (HOMA2-B, HOMA2-IR and C-peptide) was 
separately created and used as validation data after missing 
imputation. The need for informed consent in Cohort 2 was 
waived by the ethics committee because the research did not 
use identifiable private information and involved no more 
than minimal risk to the participants. Participants were given 
the option to decline the use of their personal data based 
on documents posted on bulletin boards or clinic websites.

Measurements

Variables such as height, weight, waist circumference and 
BP of participants in both cohorts were measured during 
study enrolment and the participants visited the clinic at 
intervals of 1–3 months. Waist circumference was measured 
at the level of the umbilicus (cm) in the standing position. 
Blood samples were collected at baseline in the morning 
after overnight fasting for ≥10 h and assayed within 1 h 
using automatic clinical chemical analysers. HOMA2-B 
and HOMA2-IR were calculated using a HOMA2 calculator 
(University of Oxford, Oxford, UK) based on fasting plasma 
glucose and fasting serum C-peptide concentrations meas-
ured at baseline [25]. Outliers in the HOMA2 calculator for 
fasting plasma glucose level (<3 mmol/l or >25 mmol/l) and 
C-peptide level (<0.2 nmol/l or >3.5 nmol/l) were capped to 
lower or upper limit values. We calculated the eGFR using 
the Japanese formula [26].

Definitions

The criteria for diagnosing diabetes were as follows: fasting 
plasma glucose level ≥7.0 mmol/l; random plasma glucose 
level ≥11.1 mmol/l;  HbA1c level ≥48 mmol/mol (6.5%); 
or regular use of glucose-lowering drugs. At least one pre-
viously confirmed positive result for an islet-associated 
autoantibody is indicative of type 1 diabetes. The severity 
of diabetic retinopathy was determined based on fundus 
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photography by qualified ophthalmologists. According to the 
modified international clinical diabetic retinopathy sever-
ity scales [27], we classified participants into the follow-
ing three groups: no diabetic retinopathy; non-proliferative 
diabetic retinopathy; and proliferative diabetic retinopathy. 
Where severity in the right or left eye was different, more 
severe staging was performed. If either non-proliferative or 
proliferative diabetic retinopathy was present, diabetic retin-
opathy was diagnosed. CKD was defined as an eGFR <60 
ml/min per 1.73  m2 for more than 90 days, and proteinuria 
was defined as albuminuria ≥30 mg/g creatinine. Coronary 
artery disease was defined using the ICD-10 codes I20–21, 
I24, I251 or I253–259 (https:// icd. who. int/ brows e10/ 2019/ 
en).

ML algorithm

The k‑means clustering and random forest classifier The 
k-means clustering was applied to create the true labels 
(type 2 diabetes subtypes pre-labelled by k-means cluster-
ing  [T2Dkmeans]) for an ML model in the two cohorts. Using 
the fpc R package (version 2.2-11, https:// cran.r- proje ct. 
org/ web/ packa ges/ fpc/ index. html), k-means clustering was 
performed 1000 times (k=4), following the method of Ahl-
qvist et al [9]. Ahlqvist’s variables (age at diagnosis, BMI, 
 HbA1c, HOMA2-B and HOMA2-IR) were used for the clus-
ter analysis. To minimise the effects of sex, men and women 
were clustered separately. The stability of clustering was 
assessed using the Jaccard index after 2000× resampling of 
the dataset [28].

An ML model was then constructed to predict type 2 dia-
betes subtypes from new data using random forest (RF), a 
supervised approach. The RF classifier is an efficient algo-
rithm that uses a subset of randomly selected training sam-
ples and variables to generate multiple decision trees [29] 
and has consistently outperformed other classifiers [30]. Fur-
thermore, the RF classifier is less affected by multicollinear-
ity in high-dimensional data, is faster and less susceptible 
to overtraining, and can calculate the importance of features 
[31]. Cohort 1 was used to train an RF multiclass classifica-
tion model that predicted type 2 diabetes subtypes (random-
Forest R package version 4.7-1.1, https:// cran.r- proje ct. org/ 
web/ packa ges/ rando mFore st/ index. html). The parameters of 
the RF algorithm, such as the random sample size, number 
of trees, minimum number of termination nodes and maxi-
mum number of termination nodes, were tuned to improve 
the prediction performance [32].

We trained an RF model (type 2 diabetes subtypes pre-
dicted by RF algorithm based on five variables  [T2DRF5]), 
based on Ahlqvist’s variables age at diagnosis, BMI,  HbA1c, 
HOMA2-B and HOMA2-IR, to assess its accuracy for 
estimating the true labels  (T2Dkmeans). To address poten-
tial missing Ahlqvist’s variables, especially insulin-related 

ones, an extended RF model (type 2 diabetes subtypes pre-
dicted by RF algorithm based on 15 variables  [T2DRF15]) 
was constructed to predict type 2 diabetes subtypes based 
on 15 variables. We made  T2DRF15 by applying the Boruta 
algorithm to select 15 important features out of an initial 
25, which were chosen based on their availability in clinical 
settings. The importance of the features and the predictive 
metrics of  T2DRF5 and  T2DRF15 for  T2Dkmeans subtypes were 
calculated.

The RF algorithm creates a proximity matrix as a 
byproduct. The proximity matrix is defined as the fre-
quency with which two cases are classified into the same 
leaf node in the decision tree of the established model and 
represents the degree of similarity between samples [33]. 
Uniform manifold approximation and Projection (UMAP) 
was used to embed this matrix in two dimensions for visu-
alisation of individual prediction probabilities calculated 
by  T2DRF15.

RF prediction in a dataset with missing variables We 
aimed to make the  T2DRF15 model applicable to individu-
als who are missing insulin-related variables. First, we 
intentionally deleted insulin-related variables in Cohort 2 
and then imputed these missing values using an RF regres-
sion analysis (ESM Fig. 1). Second, the Cohort 2 individu-
als imputed were classified by  T2DRF15. Third, to evaluate 
the importance of variables, we determined the predic-
tion accuracy of  T2DRF15 for labelling by  T2Dkmeans when 
variables were omitted step-wise for three insulin-related 
variables and the others. Proportions of undecidable indi-
viduals were also determined. Fourth, the performance of 
 T2DRF15 was further evaluated using precision (% of data 
that actually belonged to the predicted clusters), recall (% 
of data that each RF model correctly predicts belongs to 
that cluster: sensitivity), F1-score (an indicator calculated 
by harmonic mean from precision and recall) and AUC 
for the receiver operating characteristic (ROC) curve for 
each subtype.

Kaplan–Meier curves for the cumulative incidence of 
retinopathy, CKD (eGFR <60 ml/min per 1.73  m2) and cor-
onary artery disease in the type 2 diabetes subtypes were 
predicted by  T2DRF15 on the putative dataset in Cohort 1.

Consistency over time

The consistency over time of subtype classification in 
four models,  T2Dkmeans, SNNN model [15],  T2DRF15 and 
 T2DRF15 with missing insulin-related variables, was assessed 
by migration patterns at baseline and 5 year follow-up in 
Sankey diagrams. The consistency over time was assessed 
by the percentage of participants whose subtype classifica-
tion did not change between baseline and 5 year follow-up.

https://icd.who.int/browse10/2019/en
https://icd.who.int/browse10/2019/en
https://cran.r-project.org/web/packages/fpc/index.html
https://cran.r-project.org/web/packages/fpc/index.html
https://cran.r-project.org/web/packages/randomForest/index.html
https://cran.r-project.org/web/packages/randomForest/index.html
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Statistical analysis

Continuous and parametric values are presented as mean 
± SD, and non-parametric values are presented as median 
(first quartile–third quartile). Group differences were ana-
lysed using one-way ANOVA or the Kruskal–Wallis test. 
Categorical values are presented as percentages, and group 
differences were analysed using the χ2 test.

Survival analysis for the cumulative incidence of dia-
betes complications in Cohort 1 was performed using the 
Kaplan–Meier method for  T2DRF15 clusters. HRs and 95% 
CIs were subsequently calculated using the Cox proportional 
hazards model. Missing values in the training data (rate is 
shown in Table 1) were imputed using the Multivariate 
Imputation by Chained Equations (MICE) algorithm [34]. 
Ten complete datasets were generated through this imputa-
tion process. The estimated values from each imputed data-
set were integrated using Rubin’s rule [35].

A p value of <0.05 indicated statistical significance. All 
statistical analyses were performed using R version 4.3.1 
(https:// www.r- proje ct. org/).

Results

k‑means cluster distribution and characteristics

In Cohort 1, the training dataset was pre-labelled  (T2Dkmeans) 
for the type 2 diabetes subtype (SIDD, SIRD, MOD or 
MARD) using unsupervised k-means clustering. The clus-
ter centre coordinates stratified by sex are shown in ESM 
Table 1. The Jaccard index (min–max) was 0.76–0.90 for 
women and 0.79–0.93 for men. As shown in ESM Table 2, 
the following characteristics were noted: the SIDD cluster 
had low HOMA2-B and high  HbA1c levels; the SIRD cluster 
had high BMI, HOMA2-B and HOMA-IR; the MOD cluster 
had a younger age at diagnosis and high BMI; and MARD 
was the most common cluster and had the oldest age at diag-
nosis. The characteristics of  T2Dkmeans were similar to those 
described by Ahlqvist et al [9].

Type 2 diabetes subtypes using RF algorithm

The model performance in  T2DRF5,  T2DRF15 and  T2DRF25 
was assessed by metrics for predicting  T2Dkmeans (ESM 
Table 3). For  T2DRF5, the overall prediction performance 
was 94.0%, and AUC values for subtypes are 99.5% for 
SIDD, 98.4% for SIRD, 99.1% for MOD and 99.0% for 
MARD. For  T2DRF15, the overall prediction performance 
was robust, achieving 94.1% of AUC (Fig. 1a), and the pre-
diction accuracy for all subtypes was validated with high 
precision, recall values and F1 scores≥0.9 (ESM Table 3). 
Among the 15 variables, C-peptide level, age and waist 

circumference, besides Ahlqvist’s five variables, were the 
most important for  T2DRF15 subtype prediction (Fig. 1b). 
The order of importance of variables varied considerably 
between subtypes (ESM Fig. 2).

External validation of the predicting model

The validity of the RF multiclass classification model trained 
with the 15 features was evaluated in Cohort 2 to confirm 
its applicability to external data. The ROC curves compar-
ing  T2Dkmeans and  T2DRF15 are shown in Fig. 2a. The over-
all accuracy was 86.3%, and the model performance was 
retained when applied to the external cohort. The detailed 
consistency indices are shown in ESM Table 3.

Classification approach for individuals with missing 
clustering variables

Correlations of the insulin-related variables, C-peptide, 
HOMA2-B and HOMA2-IR, between observed and pre-
dicted values showed strong correlations in Cohort 2 with 
missing insulin-related variables (R2=0.83–0.92) (ESM 
Fig. 3 a–c). The mean absolute differences of these variables 
were small and normally distributed, suggesting a relatively 
small impact of imputing the insulin-related variables on 
subtype predictions (ESM Fig. 3 d–f). The predictive perfor-
mance (ROC) by  T2DRF15, including imputed insulin-related 
variables, is shown in Fig. 2b. The overall prediction perfor-
mance of  T2DRF15 was 82.9%, and AUC values for the diabe-
tes subtypes were 97.4% for SIDD, 96.4% for SIRD, 93.7% 
for MOD and 97.6% for MARD (ESM Table 3). The impact 
of missing variables on classification metrics of  T2DRF15 is 
shown in ESM Fig. 4. When omitting variables, the predic-
tion accuracy of  T2DRF15 did not change in individuals until 
a decrease was seen when age and BMI were omitted from 
the insulin-related variables (ESM Fig. 4a). Similarly, the 
proportion of undecidable individuals did not alter age and 
BMI were omitted (ESM Fig. 4b). The classification metrics 
per cluster also did not change until age and BMI were omit-
ted (Fig. 4c, numbers 12 and 13 on x-axis) but the declines 
of values was more rapid in SIRD and MOD than in SIDD 
and MARD (ESM Fig. 4c).

Evaluating consistency over time and clarity of type 
2 diabetes subtype classification

The similarities between participants was visualised by 
UMAP, using the proximity matrix calculated by RF, 
and colour-coded with  T2Dkmeans (Fig. 3a) and  T2DRF15 
(Fig. 3b). When the individual predictive probabilities com-
puted in the RF were embedded in the proximity matrix, 
participants with low predictive probabilities were located in 
the boundary regions of the subtypes (ESM Fig. 5). The data 

https://www.r-project.org/
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Table 1  Clinical characteristics of study participants at baseline in Cohort 1 stratified by type 2 diabetes subtypes predicted by RF classifier 
trained using 15 selected features  (T2DRF15)

Values are presented as mean ± SD, median (IQR) or n (%)
p values were obtained by one-way ANOVA, Kruskal–Wallis test or χ2 test
AST, aspartate aminotransferase; ALT, alanine aminotransferase; DPP-4, dipeptidyl peptidase-4; gCr, g of creatinine; GLP-1, glucagon-like pep-
tide-1; γGT, γ-glutamyl transpeptidase; SGLT, sodium–glucose cotransporter 2; T2D, type 2 diabetes

Clinical feature Missing 
rate (%)

Overall
(n=619)

T2D subtypes predicted by RF classifier  (T2DRF15) p value

SIDD
(n=116; 18.7%)

SIRD
(n=90; 14.5%)

MOD
(n=109; 17.6%)

MARD
(n=216; 34.9%)

Undecidable
(n=88; 14.2%)

Demographic characteristics
 Female, n (%) 0 280 (45) 43 (37) 44 (49) 58 (53) 101 (47) 34 (39) 0.086
 Age, years 0 69 ± 13 68 ± 12 63 ± 14 60 ± 13 76 ± 7 68 ± 12 <0.001
 Age at diagnosis, years 0 51 ± 12 44 ± 10 48 ± 12 41 ± 7 60 ± 7 50 ± 12 <0.001
 Duration of diabetes, 

years
0 18 ± 9 24 ± 11 14 ± 8 19 ± 9 16 ± 8 19 ± 11 <0.001

 Current smoker, n (%) 0 95 (15) 18 (16) 21 (23) 18 (17) 27 (13) 11 (13) 0.169
 Alcohol use, n (%) 0 181 (29) 30 (26) 27 (30) 30 (28) 65 (30) 29 (33) 0.830
Anthropometric data
 BMI, kg/m2 0 26.5 ± 6.4 24.5 ± 4.7 32.9 ± 8.5 30.7 ± 5.3 22.5 ± 2.7 27.1 ± 5.2 <0.001
 Waist circumference, cm 1.6 92 ± 15 90 ± 13 106 ± 17 100 ± 12 84 ± 9 95 ± 13 <0.001
 Systolic BP, mmHg 0 132 ± 18 128 ± 18 132 ± 18 134 ± 19 131 ± 18 133 ± 16 0.116
 Diastolic BP, mmHg 0 73 ± 12 72 ± 12 75 ± 13 77 ± 11 71 ± 11 74 ± 12 0.006
Laboratory measurements
 Fasting plasma glucose, 

mmol/l
0 7.7 ± 2.0 8.9 ± 2.4 7.3 ± 1.6 7.3 ± 2.0 7.4 ± 1.5 7.9 ± 2.4 <0.001

  HbA1c, mmol/mol 0 54 ± 11 72 ± 11 49 ± 6 49 ± 6 49 ± 5 53 ± 2 <0.001
  HbA1c, % 0 7.1 ± 1.1 8.7 ± 1.0 6.6 ± 0.5 6.7 ± 0.5 6.6 ± 0.5 7.0 ± 0.8 <0.001
 Fasting serum C-peptide, 

nmol/l
0 0.80 ± 0.51 0.54 ± 0.29 1.59 ± 0.65 0.73 ± 0.29 0.64 ± 0.28 0.80 ± 0.42 <0.001

 HOMA2-B 0 67.7 ± 36.9 37.4 ± 11.2 132.2 ± 39.9 69.6 ± 18.3 56.0 ± 15.8 68.2 ± 30.9 <0.001
 HOMA2-IR 0 1.84 ± 1.08 1.31 ± 0.53 3.86 ± 0.97 1.59 ± 0.47 1.39 ± 0.48 1.87 ± 0.93 <0.001
 Triacylglycerols, mmol/l 0 1.2 (0.8–1.3) 1.2 (0.9–2.0) 1.7 (1.3–2.3) 1.3 (0.9–1.8) 1.0 (0.7–1.4) 1.3 (0.9–1.9) <0.001
 HDL-cholesterol, 

mmol/l
0 1.4 ± 0.4 1.4 ± 0.4 1.3 ± 0.3 1.4 ± 0.3 1.5 ± 0.4 1.4 ± 0.3 <0.001

 LDL-cholesterol, mmol/l 0 2.7 ± 0.8 2.6 ± 0.8 2.7 ± 0.7 2.7 ± 0.7 2.6 ± 0.8 2.8 ± 0.9 0.597
 AST, U/l 0 21 (17–28) 21 (17–28) 23 (17–36) 20 (16–28) 21 (17–26) 21 (17–28) 0.109
 ALT, U/l 0 19 (14–30) 21 (15–31) 26 (15–47) 20 (15–35) 17 (12–24) 18 (15–27) <0.001
 γGT, U/l 0 25 (17–42) 26 (18–44) 38 (23–59) 24 (16–36) 22 (17–35) 26 (17–39) <0.001
 eGFR, ml/min per 1.73 

 m2
0 63 ± 19 66 ± 21 56 ± 22 70 ± 19 62 ± 16 61 ± 19 <0.001

 Uric acid, μmol/l 0.2 321 ± 78 308 ± 81 359 ± 75 315 ± 70 308 ± 74 338 ± 83 <0001
 White blood cell,  103/μl 0 6.3 ± 1.9 6.4 ± 1.9 6.7 ± 1.9 6.5 ± 1.7 5.7 ± 1.9 6.6 ± 2.1 <0.001
 Haemoglobin, g/l 0 136 ± 18 139 ± 17 141 ± 20 138 ± 17 132 ± 17 136 ± 18 <0.001
 Platelets,  104/μl 0 22.2 ± 6.6 22.2 ± 5.7 21.9 ± 6.1 23.2 ± 6.7 21.3 ± 7.0 23.2 ± 6.7 0.078
 Albuminuria, mg/gCr 2.6 21 (8–86) 28 (8–155) 35 (10–165) 18 (7–69) 16 (7–44) 28 (8–153) 0.009
Glucose-lowering drugs, n (%)
 Sulfonylurea 0 53 (9) 18 (16) 4 (4) 11 (10) 16 (7) 4 (5) 0.020
 Metformin 0 291 (47) 69 (60) 41 (40) 67 (62) 73 (34) 43 (49) <0.001
 DPP-4 inhibitor 0 352 (57) 65 (56) 38 (42) 73 (67) 132 (61) 44 (50) 0.003
 SGLT2 inhibitor 0 157 (25) 41 (35) 28 (31) 30 (28) 33 (15) 25 (28) <0.001
 GLP-1 receptor agonist 0 64 (10) 20 (17) 19 (21) 11 (10) 3 (1) 11 (13) <0.001
 Insulin 0 184 (30) 72 (62) 8 (9) 28 (26) 50 (23) 26 (30) <0.001
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with a predictive probability of less than 0.6 were defined 
and relabelled as an ‘undecidable cluster’ to minimise uncer-
tainty in the  T2DRF15 model (Fig. 3b). This group of data 
(accounting for 14.2% of all participants) was located in 
the boundary region; after excluding them, the data were 
clearly divided into four clusters, showing high predictive 
reliability (Fig. 3c). After excluding the undecidable cluster, 
the clinical characteristics of  T2DRF15 subtypes for SIDD, 

SIRD, MOD and MARD (Table 1) were almost identical to 
those of  T2Dkmeans reported previously [10]. In contrast, the 
undecidable cluster showed no distinctive clinical charac-
teristics. For example, in this type, the percentage of female 
sex was as low as in SIDD; age was higher than in SIRD 
and MOD but lower than in MARD; BMI was higher than 
in SIDD and MARD but lower than in SIRD and MOD; and 
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HOMA2-IR was higher than in SIDD and MARD but lower 
than in SIDD and MARD.

We tested the consistency of subtype classification at 
baseline and after 5 years in  T2Dkmeans, SNNN,  T2DRF15 and 
 T2DRF15 with missing insulin-related variables.  T2Dkmeans 
showed low consistency (Fig. 4a; 58.9% for SIDD, 53.8% for 
SIRD, 70.6% for MOD and 77.8% for MARD). SNNN also 
showed low consistency (ESM Fig. 6). In contrast,  T2DRF15, 
after excluding the undecidable cluster, showed higher con-
sistency (Fig. 4b,c; 100% for SIDD, 68.6% for SIRD, 94.4% 
for MOD and 97.9% for MARD) than those of  T2Dkmeans. 
The mean consistency for four type 2 diabetes subtypes 
between baseline and 5 years of follow-up was 96.2%, com-
pared with 49.5% in the undecidable cluster.  T2DRF15 with 
missing insulin-related variables also showed a high con-
sistency (mean 94.1%, except for the undecidable cluster, 
Fig. 4d).

Survival analysis of diabetes complications

To test whether  T2DRF15 could predict clinical outcomes, 
Kaplan–Meier analysis of diabetes complications was per-
formed in a putative dataset in Cohort 2 with missing insu-
lin-related variables (Fig. 5). The median observation period 
was 11.6 (IQR 4.5–18.3) years. The cumulative incidence of 
diabetic retinopathy and CKD differed among the diabetes 
subtypes. After adjusting for baseline age and sex, the risk for 
diabetic retinopathy was higher in the SIDD cluster than in 
the MARD cluster (HR 2.08 [95% CI 1.36, 3.18], p<0.001). 
Similarly, the risk of CKD was higher in the SIRD cluster 
than in MARD (HR 1.58 [95% CI 1.01, 2.46], p<0.001). 
These findings were consistent with those of previous reports 
[9, 10] that had determined the subtypes using k-means clus-
tering  (T2Dkmeans). Namely, the risk of CKD was higher in 
the SIRD cluster of  T2Dkmeans than in MARD (the age- and 
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sex-adjusted HR 2.41 [95% CI 2.08, 2.79], p<0.0001 in the 
Nordic population [9]; HR 1.60 [95% CI 1.03, 2.47], p=0.035 
in our Japanese population [10]). The risk of diabetic retin-
opathy was higher in the SIDD cluster of  T2Dkmeans than in 
MARD (the age- and sex-adjusted HR 1.33 [1.15, 1.54], 
p<0.0001 in the Nordic population [9]; HR 1.78 [95% CI 
1.30, 2.43], p<0.001 in our Japanese population [10]). Mean-
while, the undecidable cluster had an intermediate risk for 
all complications (Fig. 5). Namely, the Kaplan–Meier curves 
for the cumulative incidence of retinopathy, CKD and coro-
nary artery disease in the undecidable cluster lay between the 
highest and lowest curves (Fig. 5).

Discussion

We developed an ML model that easily and consistently 
classifies individuals with type 2 diabetes into Ahlqvist’s 
subtypes by minimising the disadvantages. Three main 

improvements were achieved: (1) our ML model employed 
RF classifiers instead of original k-means [19], which ena-
bled us to predict Ahlqvist subtypes for new individuals that 
were not included in the mother dataset; (2) by integrating 
imputation algorithms, the RF classifier was able to accu-
rately predict type 2 diabetes subtypes even for individuals 
with missing HOMA2-B and HOMA2-IR [20]; and (3) by 
defining an undecidable cluster, the RF classifier achieved 
high consistency during 5 years of follow-up in the subtype 
classification. This new ML model has great potential for 
clinical practice and cohort studies because it can classify 
individuals newly diagnosed with type 2 diabetes into Ahl-
qvist’s subtypes using readily available variables.

Our ML model enables us to classify individuals into 
Ahlqvist’s subtypes by employing an RF classifier. Owing to 
its ease of implementation and low computational complex-
ity, k-means clustering, an unsupervised ML algorithm, is 
most frequently used among several methods for AI subtyp-
ing [36]. Actually, Ahlqvist’s k-means clustering based on 
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five fixed variables [37], including age at onset, BMI,  HbA1c, 
HOMA2-B and HOMA2-IR, is the most extensively studied 
in diabetes research [9–12, 14]. However, the k-means clus-
tering cannot classify new individual cases not included in 
their mother dataset because it depends on the positioning 
of cases in an entire dataset map [19]. Previously, one of 
our team found that RF-based ML algorithms are useful for 
risk stratification beyond conventional classifications and 
are applicable case by case in people with ovarian cancer 
[38] or heart failure [39]. In this study, we similarly created 
a novel ML model based on RF and developed a method to 
determine Ahlqvist’s subtype on a case-by-case basis.

By integrating imputation algorithms, the RF classifier 
was able to accurately predict type 2 diabetes subtypes even 
for individuals with missing insulin-related variables. As 
discussed above, the diabetes clustering cannot be applied 
when the fixed variables HOMA2-B and HOMA2-IR are 
missing [21, 22]. C-peptide levels, which are used to cal-
culate the HOMA2 indices, are not routinely measured in 
people with diabetes in clinical practice and in standard 

cohort studies, usually due to the cost. Our RF classifier 
could predict diabetes subtypes, even when C-peptide was 
missing, by imputing with high consistency. To our knowl-
edge, this study for the first time shows that the RF classi-
fier can predict diabetes subtypes even when insulin-related 
variables are missing.

Our ML model showed long-term consistency in all four 
diabetes clusters. Consistency over time of previous AI mod-
els in determining type 2 diabetes subtypes has been limited. 
Bello-Chavolla et al reported an approach for classifying 
diabetes subtypes using an SNNN model [15]. Since sub-
type consistency during follow-up with this approach was 
low, they considered that diabetes subtypes are changeable 
and should be reassessed periodically to understand the 
trajectories and risks of diabetes complications [15]. How-
ever, when applying their SNNN model to our participants 
in Cohort 1, the consistency of the subtypes was also low 
(Fig. 3b): the SNNN model demonstrated an overall accu-
racy of 69% but was particularly low for the SIDD (36.4%) 
and SIRD (16.3%) clusters. The difference in consistency 
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over time between RF classification and SNNN in the same 
population suggests that the diabetes subtype is simply not 
correctly determined rather than changeable. The diabetes 
subtype should be consistent in an individual over years of 
long clinical course in terms of genetic risk [40], molecular 
mechanisms [41] and complication risk [9, 10]. We achieved 
excellent long-term consistency in subtype classification by 
excluding an undecidable cluster in all four diabetes sub-
types. Given that previous studies on diabetes subtypes 
have used ‘hard’ clustering methods such as k-means, which 
forcefully assigns samples at boundaries of clusters to either 
cluster, we a priori hypothesised that ‘hard’ clustering leads 
to lower consistency in diabetes subtyping. Therefore, we 
employed the idea of grouping samples with low predic-
tion probability by the RF classifier (i.e. populations with 
uncertainty about which subtype they belong to) as a single 
‘undecidable’ cluster rather than forcing their assignation 
to a subtype. This is a clinically acceptable approach, given 
that BMI and  HbA1c often fluctuate during treatment and are 
inappropriate for inclusion in the subtype prediction. Con-
sidering this undecidable cluster, little migration among sub-
types occurred after the 5 year follow-up; thereby high con-
sistency was achieved (well differentiated). Individuals in 
the undecidable cluster had unclear diabetes characteristics 
and a non-typical course of diabetes complications for the 
diabetes subtypes, and approximately half of them moved to 
different subtypes after 5 years (Table 1, Fig. 4b, c).

This study had several limitations. First, the sample size 
of the training dataset is relatively small. Second, because 
this study was conducted only in the Japanese population the 
results cannot be generalised, thereby limiting applicability to 
other ancestral populations. We tested consistency by recruit-
ing two Japanese cohorts with diverse genetic predispositions. 
However, future studies are further needed to assess whether 
our approach is applicable to multiethnic populations. Addi-
tionally, whilst the study sample is broadly representative of 
general demographic distribution of the Japanese population 
with diabetes in terms of sex, age and socioeconomic factors, 
the potential limitations and biases of these factors should still 
be considered when interpreting the results. Third, because 
some study participants were enrolled after the start of diabe-
tes treatment rather than at the onset of diabetes, the variables 
used for clustering and prediction could have been affected at 
least partly by lifestyle interventions and medications the par-
ticipants received before study enrolment. Fourth, the reasons 
for group migration and changes in clinical variables in the 
undecidable cluster are yet to be determined. This undecidable 
cluster was atypical, with no clear clinical features (Table 1). 
In the future, the respective characteristics (i.e. clinical features 
and genetic predisposition) of individuals moving between 
clusters and of undecidable groups need to be clarified.

In conclusion, we developed a novel ML model for type 
2 diabetes subtypes. The new RF-based model for predicting 

Ahlqvist’s subtypes of type 2 diabetes has great potential for 
application in a wide range of research, including large-scale 
cohorts and clinical studies, because it can classify individuals 
with missing HOMA2 indices and predict glycaemic control, 
diabetes complications and treatment outcomes with long-term 
consistency by using readily available variables. Future stud-
ies are needed to assess whether our approach is applicable to 
research and/or clinical practice in multiethnic populations.
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